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Executive Summary 

The Tarari® High-Performance Computing Processor accelerates 
the execution of complex algorithms used in high-performance 
computing (HPC) applications. The Processor allows high-
performance computing users in industry, government and 
education to accelerate complex and compute-intensive 
applications in areas such as: 

• Biotech 

• Embedded HPC for signal processing 

• Embedded HPC for image processing 

• Communications 

• Entertainment 

• Seismic 

• Financial/commercial 

Tarari High Performance Computing Processors (or “Tarari 
Processors”) accelerate complex algorithms by moving the core 
algorithms off of traditional processors and into reconfigurable 
logic. The Tarari Processor is based on dynamically 
reconfigurable hardware, which means that multiple “agent” 
algorithms (code for reconfigurable logic) can be loaded or 
changed “on the fly” by user software on the host processor. 
Dynamic reconfigurability also allows for easy upgrades and 
further improvements in acceleration. 

Using this document, system designers can determine whether 
their particular applications are good candidates for acceleration 
of certain algorithms on a Tarari Processor. The document ends 
with concrete examples of applying the Tarari Solution. 
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Overview of Tarari Solution 

The Tarari Solution is: 

• the Tarari Processor, based on an integrated processing 
platform (see 

); 
Figure 1--Tarari Processing Platform Block 

Diagram

Figure 1--Tarari Processing Platform Block Diagram 
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• reconfigurable logic that can target specific compute-
intensive tasks and decrease the processing time required 
to perform them. 

Content Processing Controller 

The Content Processing Controller is the heart of the Tarari 
Processor, connecting the PCI bus, DDR SDRAM (“DDR 
memory”), and the Content Processing Engines. It also contains 
the Configuration Logic, which initializes and dynamically 
reconfigures Acceleration Agent Sets that are loaded into the 
Engines. With four independent busses, the Content Processing 
Controller allows multiple algorithms to run simultaneously, and 
it allows data to move to and from the onboard DDR memory at 
high speed. 

The importance of the Content Processing Controller is that it 
drives reconfigurable logic on the Tarari Processor. It can 
dynamically reconfigure Acceleration Agent Sets (groups of 
acceleration agents that solve particular problems and run in the 
Content Processing Engines) within 30 milliseconds so that they 
can solve different problems or even different parts of the same 
problems.  

Reconfigurable logic: 

• provides the ability to load new agents to partially or 
completely change functionality, without requiring 
changes to the hardware; 
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• can load new agents while existing agents continue 
processing; 

• does not require a system re-boot.In the example shown 
in , the Content Processing 
Controller reconfigures logic on the Tarari processor to change it 
from an SSL accelerator to an SSL/XML/GZIP accelerator. Note 
that some of the RSA capacity is reconfigured for XML parsing 
and the DES/3DES capacity is reconfigured for GZIP (green 
dashed outline), while RNG and some RSA capacity remain 
unchanged (red outline)*. The option of reconfiguring all or part 
of the logic—“partial reconfigurability”—is another feature of the 
Tarari Processor. 

Figure 2--Reconfigurable Logic

Figure 2--Reconfigurable Logic 

 

Logic “Layout” on Tarari 
Processor before 
Reconfiguration 

 
Logic “Layout” on Tarari 

Processor after 
Reconfiguration 
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Finally, the Content Processing Controller’s capacity for 
managing traffic and processes such as agent-chaining (see 
below) on the Tarari Processor is what permits the Content 
Processing Engines to achieve algorithm acceleration and higher 
overall system performance, while insulating the designer from 
the details of bus management and intelligent data management. 

Content Processing Engine 

In the Tarari Processor are two Content Processing Engines. 
These Engines embody reconfigurable logic in the form of 
hardware gates, Block-RAM (“BRAM”), and specialized functions 
such as multipliers and clock managers. At system startup a 
software-based Agent Configuration Manager loads the 
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application-specific Acceleration Agent Sets into reconfigurable 
logic in the Engines to accelerate algorithms and applications. 
With the tremendous flexibility of the Engines, users enjoy high-
performance computing benefits such as: 

• Pipelining—Pipelining allows all instructions in an 
algorithm to execute on every clock cycle. Unlike a 
traditional processor (where the instructions are fetched, 
decoded and then executed), each element of the logic on 
a Tarari processor can be executed at the same time. This 
is similar to a “bucket brigade” which moves water from 
each person to the next, with each bucket moving at the 
same time. Each piece of logic “executes” at the same 
time. 
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Figure 3--Pipelining 

The ability to register intermediate results allows for a 
higher clock rate of logic design and higher throughput. 
This results in less idle capacity on the Tarari Processor 
and an increase in the number of instructions that can be 
performed during a given time period. Even if there is 
some sequential dependency, a pipelined application can 
take advantage of those operations that can proceed 
concurrently. 

• Parallelism—It is possible for multiple instantiations of 
an agent or multiple agents to be executed in parallel. In 
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a regular expression matching application, the benefits of 
acceleration are multiplied 
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Figure 4--Parallelism 

as more instantiations of the same agent are added to the 
Acceleration Agent Set. Five instantiations working in 
parallel can process five times the data.  

• Agent-Chaining—This is one of the most important 
techniques of which high-performance applications on the 
Tarari Processor can take advantage. In agent-chaining, 
the output from one algorithm (or Agent) can be used as 
the input for another algorithm, while still staying on the 
board and without going back to the PCI bus. 

Consider the example of pattern-matching in aerial 
photos, employing several different agents in the same 
Acceleration Agent Set. Compressed images are streamed 
onto the Tarari Processor and decompressed by the 
algorithm in the first agent. The resulting images are 
handed off to a pattern-matching algorithm in a second 
agent. For exact matches, a value is returned to the host 
application; fuzzy matches are handed off to a scoring 
algorithm in yet a third agent.  
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Figure 5--Agent-Chaining 

Another example is that of a MIME-encoded, compressed 
e-mail attachment. In the Tarari Solution, one 
acceleration agent decodes the stream of data, then 
hands off its result to a waiting decompression agent. 
Once all processing is finished, the encoded, 
decompressed data are sent back to the host application. 

For example, Acceleration Agent Sets for cryptography 
could perform tasks such as the RSA, SHA1, and 3DES 
algorithms, both pipelined (to execute all stages of all 
algorithms) and in parallel (through multiple 
instantiations). Dedicating these tasks to the Tarari 
Processor not only offloads them from the host processor, 
but also accelerates the processing of encrypted traffic on 
the host system. 

Zero Bus Turnaround, Synchronous Static RAM (ZBT SSRAM) 

Each Content Processing Engine has two Zero Bus Turnaround 
SSRAM modules available as low-latency, high-speed access to 
scratch-pad memory during operations. These SSRAMs are also 
available for caching local variables. Each of the two 18-bit 
SSRAMs can be accessed separately or combined for 36-bit 
operations. 

Page 9 of 32 TAR_AL_AN_20031130 



High-Performance Computing Algorithm Analysis    

Double Data Rate, Synchronous Dynamic RAM (DDR Memory) 

While the Content Processing Controller manages the movement 
and processing of data on the Processor, it uses Double Data 
Rate, Synchronous Dynamic RAM as its workspace. DDR memory 
is used for: 

• high-speed Direct Memory Access (DMA) transfers 
between the host processor and the Tarari Processor over 
the PCI bus 

• local storage for data being processed 

• storage for acceleration Agents, to allow for immediate 
reconfiguration of logic 

Workflow on the Tarari Processor 

So, a typical application will flow as follows: 
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1) At system startup, the Agent Configuration Manager 
sends one or more Acceleration Agent Sets into DDR 
memory. The Content Processing Controller then loads, or 
instantiates, them into the Content Processing Engine(s). 
This is analogous to the Controller “flashing” the Engines 
with images of the agent sets. 

2) The application on the host processor sends data over the 
PCI bus to the Processor, and the Controller stores the 
data temporarily in DDR memory. 

3) The agent in the Engine fetches data across the Controller 
from DDR memory using one of three memory access 
modes (Direct, Streaming, and Transaction-based) and 
executes the algorithm on the data. The Engine may use 
Zero Bus Turnaround memory for lookup tables and as 
scratch-pad. If the agent takes advantage of parallelism, 
the Engines will execute different parts of the algorithm 
simultaneously. 
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4) The agent sends the result of the calculations back across 
the Controller to DDR memory. 

5) If the agent takes advantage of pipelining or agent-
chaining, another agent can now operate on the result by 
again calling it from DDR memory; otherwise, the 
Controller returns the result over the PCI bus to the host 
processor. 
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Evaluating Applications for the Tarari Processor 

Applications that benefit the most from the Tarari Processor 
adhere to all or most of the following “A-B-C-D” guidelines, 
detailed below: 

• A—Algorithm Acceleration—The algorithms run faster on 
the Tarari Processor than on the host processor. 

• B—Benefits of Offloading—The overall system runs faster 
if some algorithms are offloaded. 

• C—Compatibility of Hardware Platform and Algorithm—
The algorithms are suitable for instantiation into the 
Tarari Processor. 

• D—Dynamically Reconfigurable Hardware—The application 
or algorithms have functionality that changes over time. 

A—Algorithm Acceleration 

BENEFIT: By implementing one or more algorithms in hardware, 
the Tarari Processor can increase the overall performance of an 
application by accelerating those algorithms, and offloading them 
from the host processor. 

METRIC: If the round-trip time between the host processor and 
the Tarari Processor is less than the time in which the host 
processor can process the algorithm by itself, the application is a 
candidate for the Tarari Solution. So, given that 

Factor of 
acceleration

Algorithm processing time on host processor

(Algorithm processing time on Tarari Processor + 
PCI bus transfer time)

= 

 
the higher the Factor of acceleration, the better suited the 
application to the Tarari Solution. However, the overall 
acceleration of the entire application will only increase as the 
percentage of the accelerated algorithm increases when 
compared with the total algorithm or application.  

For example, if we accelerate 20% of the total algorithm 
infinitely fast (so that it takes zero time to execute), then the 
entire algorithm will run in only 80% of the original time: a 25% 
improvement in performance. In the case of an accelerated 
algorithm being 50% of the total algorithm or application, the 
maximum possible increase would be 100%; i.e., the program 
runs twice as fast. Of course, the time to execute cannot reach 
zero, so actual performance improvements are also a function of 
the code efficiency on the reconfigurable logic. 
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Determining the Algorithm Processing Time 

Estimating the algorithm processing time on both the host 
processor and the Tarari Processor requires careful engineering 
analysis, because it is dependent on many variables in the 
hardware and software design. Cycles-per-byte values for a 
variety of commonly used algorithms and applications (3DES, 
SHA-1, MD5, variants of AES and RC4 are used to protect online 
transactions) appear in 

, and clock cycles can also be measured while 
running algorithms obtained from standard libraries. The cycles-
per-byte ratio represents the “compute-to-communicate” 
relationship at work, since all algorithms require some 
combination of both factors. 

Figure 6--Selected Algorithms—CPU 
Cycles/Byte Ratio

Calculating the PCI Bus Transfer Time 
This example shows how to calculate the bus transfer time for a 
specific host platform. It makes these assumptions about the 
hardware characteristics of the platform being evaluated: 

• 64-bit/66MHz PCI bus 

• 50% PCI bus efficiency 

• 2.4GHz CPU 
The following calculations lead to a net cycles-per-byte ratio: 
 

Step Calculation Result 

PCI bus (64-
bit/66MHz) 
throughput 

64 bits/cycle x 66 
million cycles/second 

4,224 million 
bits/second 

Equivalent in bytes 4,224 million 
bits/second ÷ 8 

bits/byte 

528 million 
bytes/second 

Cycles required to 
transfer one byte 

(2.4GHz CPU) 

2.4 billion 
cycles/second ÷ 528 
million bytes/second 

4.5 cycles/byte 
(approximate) 

 

Assuming the output is approximately the same size as the 
input—see “ ” below—this figure 
must be doubled, because the transaction is not complete until 
the data travels in both directions: to the Tarari Processor, and 
then back to the host processor. This would result in a figure of 9 
cycles per byte if the PCI bus ran at 100% efficiency. 

Algorithm Input-to-Output Ratio

However, given the overhead involved in preparing and sending 
data across the bus, including generating host interrupts, a PCI 
bus-efficiency of 50% is much more realistic. The result in this 
example is, therefore, 18 cycles to transfer one byte of data 
round-trip across the PCI bus; so for an algorithm to be a good 
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candidate for acceleration, that algorithm must execute in 
hardware at least 18 cycles per byte faster than the host 
processor could execute the algorithm (just to account for PCI 
bus transfers). If the data is streaming on and off the Tarari 
Processor, then the impact of this calculation is reduced as the 
latency for the calculation is a fixed amount of time. 
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igure 6--Selected Algorithms—CPU Cycles/Byte Ratio 

Another paradigm is that of “compute vs. communicate”. 
 maps a range of 

commonly used algorithms by comparing compute cycles and 
bandwidth. The 3DES algorithm, for example, is a good 
candidate for acceleration, because the encryption processing 
typically runs on 90% of the data. The RSA algorithm is an even 
better candidate because its complex calculations require 
simultaneous multiplication of very large numbers. These 
calculations might consume 80% to 90% of the host processor’s 
total compute cycles. 

Figure 
7--Algorithm Types—Compute vs. Communicate
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Figure 7--Algorithm Types—Compute vs. Communicate 

Other Factors 

Algorithm Input-to-Output Ratio 

For some algorithms, all data is transferred to the Tarari 
Processor, but once the data is processed there, the Tarari 
Processor passes back only a short result. In virus scanning, for 
example, a large stream of data crosses the bus from host 
memory to DDR memory for processing, and a relatively small 
quantity of data (the result of the scan) is returned with only an 
indication of whether the data is free from viruses. For this type 
of application, a transfer rate of up to 2 Gbps is possible. For 
other algorithms, the entire data set must be transferred both to 
and from the Tarari Processor; thus, the practical maximum rate 
of transfer is just over 1 Gbps. So it is important to understand 
for each algorithm what quantity of data is returned for each 
byte of data that is transferred to the Tarari Processor. 

Parallel Processing Techniques 

Parallel processing techniques increase performance by 
instantiating multiple copies of an algorithm, or a portion of an 
algorithm. If, for example, a section of an algorithm operates 
much more slowly than the rest of the logic, then splitting the 
data path into two or more paths allows that section to be 
replaced with multiple copies of itself. Assuming that the Content 
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Processing Engines have sufficient resources to accommodate 
more than one copy, two copies of an algorithm in simultaneous 
execution will finish the operation in half the time. It is necessary 
to analyze the algorithm to determine whether it would benefit 
from running multiple processes in parallel. 

Pipelining/Agent-Chaining Algorithms 

An algorithm well suited to the Tarari Solution will buffer 
input/output, and balance input/output and computation by 
taking advantage of pipelining and agent-chaining operations on 
the Tarari Processor, as described in “ ” 
above.  

Content Processing Engine

Data Width 

In some instances, wide data operations can be performed much 
faster on the Tarari Processor where there are no hard limits to 
the data width, as there are in the CPU. This allows the operation 
to be completed in one cycle on the Tarari Processor, instead of 
multiple cycles in the CPU. Alternatively, the Tarari Processor can 
also operate on smaller or odd data widths, such as 8 or even 13 
bits. 

Key Questions 

 Does the application require a given level of data throughput, 
input bandwidth or output bandwidth? Is this a real-time 
application in which bandwidth is a significant component of the 
processing time? Can the PCI bus provide this bandwidth? 

 Does the application have a high operation/byte ratio? 
 Can the application benefit from parallel or multi-threading 

operations by running multiple instantiations on the Tarari 
processor? 

 Can the application be pipelined? Is the next data operation 
dependent on the result of the previous data operation? 

 From the time that the first data are moved from host to PCI 
bus, how long will it take to process the data and return the 
answer? Can input/output be overlapped with processing? 

 Can the application take advantage of wide/odd data widths to 
offload more operations to the Tarari Processor? 

B—Benefits of Offloading 

BENEFIT: Host resources are freed up to perform other 
operations, such as feeding even more data to the Tarari 
Processor. 

METRIC: Offloading is beneficial when the host processor can 
perform other work while the Tarari Processor executes the 
algorithm. The best candidates for offloading are those 
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algorithms that not only execute much faster in hardware, but 
also consume a large percentage of host processor cycles. 

Freeing Up the Host Processor 
It can make sense to offload algorithms even if there is no 
acceleration. Assume, for example, that an application uses 
100% of the host processor’s cycles, and a compression 
algorithm uses 50% of those cycles. If the compression 
algorithm were offloaded, then all of the host processing cycles 
would be available, roughly doubling the performance of the 
portion of the application that remained on the host processor. It 
is also possible to design the agent and its software driver to 
overlap input/output transfers with processing to overcome any 
PCI bus overhead. 

Taking Advantage of No Data Dependencies 
Overall system performance is also affected when the host 
processor algorithms have data dependencies on the offloaded 
algorithms. If there are no dependencies, then the algorithms 
can run simultaneously on host and Tarari Processors and there 
is an opportunity to increase overall performance of the system. 
Furthermore, if the application allows for overlapping I/O and 
computation, and does not need to pause for the result of a 
calculation being performed on the Tarari Processor before it can 
continue executing, then performance benefits due to freeing up 
host processor cycles can be even greater. 

Calculating Overall System Acceleration 
The total increase in system performance is a function of both 
the amount of acceleration delivered by the Tarari Processor and 
the percentage of CPU resources freed up as a result of 
offloading the work to the Tarari Processor. To determine the 
benefit that an application can realize from using the Tarari 
Processor to “redeploy cycles” in this manner, it is important to 
analyze the algorithm to see how much faster it runs in hardware 
than it does on the host processor. Consider, for example, a 
decompression operation which takes one full second to process 
on the CPU, and which requires 80% of the CPU’s resources: 
 

Process 
results 
.010 sec 

Pattern-
match 
.050 sec 

Decompress data 
.900 sec 

CRC 
.005 
sec 

Read 
data 
.035 sec 
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With the operation offloaded to the Tarari Processor, that same 
second of CPU time could look like this: 

 

 

 
 

 
 

Read 
data 
.035 
sec 

CRC 
.005 
sec 

Decompress 
data 
.850 sec 

Pattern-
match 
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sec 

Hand off 
results 
.010 sec 

Send to 
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.005 sec 

Process 
results 
.010 sec 

Read in next sets of data 
.950 sec 

Read 
data 
.035 sec 

So, while the decompression work itself on the Tarari Processor 
went only slightly faster (.850 second instead of .900 second, or 
a 1.06x improvement), the CPU reclaimed .950 second (20x 
improvement), which it could devote to other operations. These 
savings combine for a 21x improvement in overall system 
performance. 
 

As CPU load 
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...and task 
completion 
time 
changes... 

...suitability of 
application and 
overall system 
performance 
increase. 
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The following formula, based on Amdahl’s Law1, shows how to 
predict the overall system acceleration gained by accelerating a 
portion of the application, if the amount of acceleration and the 
fraction of host processor cycles that the algorithm consumes are 
known: 
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Overall 
System 
Acceleration 

1 
(1 - Fraction Accelerated) 
+ Fraction Accelerated / 
Amount of Acceleration 

= 

 

 
In applying this formula to specific examples, it becomes clear 
how results can vary. 

If 40% of an application can run 5 times faster, the system enjoys a 
1.47x improvement: 

• Fraction accelerated = .4 

• Amount of acceleration = 5 

• Overall system acceleration = 1/ [(1-.4) + (.4 / 5)] = 
1.47 

A second example, with a 5.26x improvement, shows that the best 
algorithms to accelerate are those which both consume a high 
number of processor cycles and run much faster in hardware. 
If 90% of an application can run 10 times faster: 

• Fraction accelerated = .9 

• Amount of acceleration = 10 

• Overall system acceleration = 1/ [(1-.9) + (.9 / 10)] = 
5.26 

Key Questions 

 Does the application have an algorithmic kernel that represents a 
majority of the processing time? Can the algorithmic kernel be 
extracted from the application and offloaded to the Tarari 
Processor?  

 Can the application take advantage of the freed-up cycles by 
executing additional tasks, such as post-processing the data 
from the previous kernel run, or preparing data for the next 
kernel run? 

 Has the application been profiled to find out where the 
bottlenecks currently exist? 

C—Compatibility of Hardware Platform and Algorithm 

BENEFIT: The Tarari Processor is suitable for algorithm 
acceleration in most servers, appliances, and network devices 
with a PCI bus interface. The more a given compute-intensive 
algorithm can exploit the resources on a Tarari Processor, the 
greater the benefits to system performance. 

METRIC: Evaluate the hardware and algorithm in light of these 
factors: 
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• System Bus 

• On-Board Memory 

System Bus 
The Tarari Processor comes in a PCI form factor. The PCI 
implementation is a 32/64-bit, 33/66 MHz, half-length, 3.3v, PCI 
card. The host system must have one of these PCI slots 
available. Using a dedicated PCI bus provides the best 
performance results. 

On-Board Memory 
The Tarari Processor contains 256 megabytes of DDR memory, 
which provides a 64-bit/133MHz data path and is accessed 
through the Content Processing Controller. The DDR memory 
stores Content Processing Engine configurations and Content 
Processing Engine-specific data. The Content Processing Engine 
uses portions of the DDR memory for pre- and post-processed 
data for each algorithm. Tarari reserves 8 MB of this memory to 
store the Content Processing Engine configuration data. 
Two Zero Bus Turnaround, Synchronous Static RAMs (ZBT 
SSRAM), organized as 512KB x 18, are also available to each of 
the Content Processing Engines. Each Content Processing Engine 
is connected to two Zero Bus Turnaround memory blocks by 
independent address and data lines operating at 133 MHz. The 
local Zero Bus Turnaround memory is typically used by 
algorithms that need a small amount of fast local memory, 
because it has a much lower latency than the DDR memory. The 
memory is available to the Content Processing Engine, and its 
use varies, depending upon the implementation of the algorithm. 
Developers have full access to the Zero Bus Turnaround memory 
as local temporary data storage for either the algorithm or 
scratch pad memory, where the requirements exceed what the 
block-RAMs alone can support. 

Key Questions 

 Does the server meet the Tarari Processor’s physical 
requirements? Will the chassis take a full-height, half-length PCI 
card? Does the power supply provide 350 watts or more? Is 
there adequate ventilation for the 25+ watts of power 
dissipation? Does the fan have more than 20CFM throughput? 

 There is 248MB of on-board DDR memory which can be split 
between the two Content Processing Engines. This memory will 
be used for input data storage, output data storage and possibly 
intermediate data storage. What is the input/intermediate/output 
data set size of the application? Does the data set fit within the 
248MB of memory? If not, then can it be broken up into chunks 
that will fit? Can it be “streamed” in and out, in a systolic 
fashion, within the constraints of the DDR memory size? 
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 The Tarari Processor2 features approximately 32 18Kbit block- 
(internal) RAMs that can be used as intermediate storage inside 
the Content Processing Engine. These block-RAMS have 
interfaces that allow low latency access to data, variables and 
coefficients. Does the algorithm/application make frequent use of 
any data that can take advantage of this feature? 

 How much of the data processing is sequential in nature? How 
much of the algorithm requires random access to the data? If the 
algorithm requires random access, then will the data set fit into 
the on-chip block-RAM, or will it fit into the off-chip Zero Bus 
Turnaround memory? Is the data interface to the Zero Bus 
Turnaround memory wide enough to allow full processing speed? 

 Is it possible to estimate the gate count (internal size 
requirements) based on the width of the operators and the 
number of arithmetic functions? 

 Do most of the algorithm’s operations require integer or floating-
point math? If floating-point, then how much dynamic range and 
how many bits of precision are needed? Can the data be 
converted to integer? If so, then how many bits of precision are 
required? 

D—Dynamically Reconfigurable Hardware 

BENEFIT: Reconfigurable logic enables cost-effective updates in 
the event that protocols change and new standards emerge. This 
could extend the time-in-market of OEM products through 
multiple generations, by using the same core technology. 
KEY TEST: If the hardware environment of the application is 
subject to change, or if changing traffic profiles prompt changes 
in the algorithms being accelerated, the Tarari Processor 
provides the market’s most versatile solution. 
An ASIC-based solution can quickly become obsolete with the 
first change to an industry standard. Whereas manufacture and 
update/upgrade of an ASIC solution will involve nonrecurring 
engineering (NRE) costs and substantial time to deploy—
prototype, fault coverage, silicon design change, fabrication, 
verification, manufacture, shipment, installation—the Tarari 
Solution allows reprogramming of hardware using software tools 
and techniques, without requiring expensive field upgrade or 
production changes. Combining CPU technology with the 
flexibility of programmable logic enables OEMs to rapidly deploy 
solutions and to maintain those solutions more cost-effectively 
than their competitors can. 
Furthermore, as the most burdensome of cycle-burning 
operations move from the host processor to the Tarari Processor, 
it soon becomes appropriate to re-examine the load on the host 

                                                                      
2 Versions 2.2 and 2.3. 
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processor for other compute-intensive operations. For example, 
if anti-virus and attachment scanning are the first applications 
offloaded to the Tarari Processor, anti-spam and intrusion 
detection will soon follow. With new agents pushed to 
reconfigurable logic in the Content Processing Engines, the Tarari 
Processor can accommodate such changes. 

Key Questions 

 Is it likely that the algorithm will evolve in depth or breadth? Is it 
subject to the requirements of users, customers, other 
applications or industry standards? 

 After the first algorithm, will subsequent, compute-intensive 
operations be offloaded to the same Tarari Processor?  

 Are multiple users likely to use the same equipment for different 
calculations? Can they effectively utilize the Tarari processor? 
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Algorithm Analysis Examples 

1. Biotechnology Research 

The computation requirements of genomic research are well 
known to be different from those of many other traditional HPC 
problems. The data is packed—2-bit or 5-bit representations of 
proteins or amino acids—and must be compared with the billions 
of other proteins or amino acids contained in the genomic 
database. This computation can be accelerated dramatically by 
passing the most compute-intensive processes to the Tarari 
Processor, as the following analysis (along the lines of the 
“A-B-C-D” outline of this paper) demonstrates. 

A—Algorithm Acceleration 

• The actual comparison comprises simple operations that 
are extremely compute-intensive and can be executed in 
hardware much faster than in software. A typical search 
with 5,000 query elements against a target database of 
2 billion elements can take up to ten days to complete 
using a single 2GHz Xeon processor. This would have the 
Xeon processor performing 100 million comparisons per 
second. 

• When offloaded to a 6 million-gate Tarari Processor, this 
application would typically reserve 2 million gates for 
“housekeeping,” leaving 4 million gates available. 
Assuming that each comparison operation requires 
20,000 gates, the Tarari Processor could perform 200 
comparisons per clock cycle (4 million gates / 20,000 
gates per comparison). Since the Tarari Processor runs at 
100MHz, the processor could perform 200 
comparisons/cycle x 100 million cycles per second for a 
total of 20 billion operations per second. This is roughly 
200 times the speed of a single Xeon processor. 

B—Benefits of Offloading 

• There is other work that the host processor can perform 
while it awaits results from the Tarari Processor, notably, 
preparation of the query and target data for the actual 
search performed on the Tarari Processor and storage and 
representation of the finished data. For older systems 
with slower processors, this means that the Tarari 
Processor could be added to each node of a cluster with 
minimal incremental expense above the cost of the Tarari 
Processor. 

C—Compatibility of Hardware Platform and Algorithm 

• The operations involved can be easily and profitably 
instantiated in hardware on the Tarari Processor. In this 
example, every computational unit of the Tarari Processor 
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has been used and all of the block-RAM has been 
allocated to the algorithm. Because the data has been 
packed in bit-level representations, there are no 
bandwidth concerns for moving data between DDR 
memory and the Content Processing Engines, nor is there 
a bandwidth issue for the DDR-to-PCI bus. 

D—Dynamically Reconfigurable Hardware 

• The algorithm, depending upon its implementation, may 
take advantage of the ability to dynamically reconfigure 
the Content Processing Engines. The algorithm could be 
adapted to configure itself one way for large queries and 
another way for small ones, and could be dynamically 
changed based upon the size of the query. 

• While certain biotechnology-related algorithms (e.g., 
Smith-Waterman) change relatively little over time, other 
algorithms and applications can exploit dynamically 
reconfigurable logic. 

2. Cryptography Acceleration Agent Set 

The overall performance of the Secure Sockets Layer (SSL) 
protocol can be accelerated dramatically by passing the most 
compute-intensive processes to the Tarari Processor, as the 
following analysis demonstrates. 
Certain of SSL’s characteristics are eminently suited to 
acceleration by the Tarari Processor, as gauged by the “A-B-C-D” 
outline of this paper: 

A—Algorithm Acceleration 

• SSL comprises some simple operations that are compute-
intensive and can be executed in hardware much faster 
than in software. 

B—Benefits of Offloading 

• The operations to be offloaded consume a high 
percentage of processor cycles on the host processor. 

• There is other work that the host processor can perform 
while it awaits results from the Tarari Processor. 

C—Compatibility of Hardware Platform and Algorithm 

• The operations involved can be easily and profitably 
instantiated in hardware on the Tarari Processor. 

D—Dynamically Reconfigurable Hardware 

• SSL is based on standards and algorithms that change 
over time. 
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RSA 

RSA (Rivest-Shamir-Adleman) is a public-key cryptographic 
algorithm, which means data is encrypted using a public key, 
and decrypted using a different, secret key. RSA is widely used 
in modern cryptographic protocols, especially for the purpose of 
securely exchanging keys for faster bulk-encryption algorithms, 
which is its function in SSL. 

The core operation of RSA is a simple but intensive arithmetical 
computation: modular exponentiation of moderately-large 
integer values. That is, for positive integers X, E and M, RSA 
requires computing the formula: 

XE mod M 

where, typically, X ≥ 1,024 bits. 
So, to analyze the RSA component of SSL in light of this A-B-C-D 
model: 

A—Algorithm Acceleration 

Due to the complexity of performing modular exponentiation 
(“modexp”) with several base-16 multipliers, it takes 2 million 
CPU cycles to perform a single 1024-bit RSA operation. That 
means that a CPU operating at 2GHz could complete 1,000 
operations per second, assuming that the CPU was doing no 
other processing at the time. Also, RSA calls in 512 bytes and 
returns 130 for a total of 642 bytes. Assuming conservatively 
that only one-third of the cycles are devoted exclusively to the 
modexp operations—so, 666,000 cycles to process 642 bytes—
the number of CPU cycles per byte (>1,000 cycles per byte) is 
much higher than the baseline for sending traffic across the PCI 
bus (18 cycles per byte). Therefore, RSA is a good candidate for 
acceleration. 
The computation work in RSA takes place on the two Content 
Processing Engines. Because the RSA agent can take advantage 
of parallelism, each Content Processing Engine can accommodate 
up to four modexp engines set up by the algorithm. Each 
modexp engine has five processing elements, and each 
processing element performs two 16x16 multiplications and four 
16-bit additions per cycle, so the result is 80 multiplications and 
160 additions per cycle. 

B—Benefits of Offloading 

In spite of the compute-intensive modular exponentiation, 
relatively little data travels back and forth in RSA decryption. The 
algorithm brings 512 bytes in for decryption in two transfers of 
256 bytes each, performs its computations (during which there is 
approximately 1.2ms latency), then returns two blocks of 65 
bytes each. Server CPUs, already juggling priority among dozens 
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or hundreds of other processes, can save 70-80% of their cycles 
by offloading RSA decryption. 
System performance, then, will benefit from offloading RSA to 
the Tarari Processor because of RSA’s high demand for compute 
cycles and low demand for bandwidth. 

C—Compatibility of Hardware Platform and Algorithm 

There are forty 18x18-bit multipliers in each Content Processing 
Engine, of which capacity only 16x16 is needed for RSA. If no 
other agents need to use the multipliers, the overall performance 
of SSL is maximized by spreading the RSA operation across both 
Engines, allowing RSA to use up to eighty multipliers, as we have 
noted. One independent agent can be instantiated on each 
Engine and the host processor can individually control and load-
balance the two agents. 

Each of the two RSA agents uses under 1MB of DDR memory for 
input and output queues. The host processor supplies the base 
address of this region using an input/output write. The agent 
requires, in each Content Processing Engine: 

 

Resource on Content 
Processing Engine 

Number Required 
by RSA Agent 

Percent of Total, 
Each Engine 

18x18-bit multipliers  40 100% 

18 kbit block-RAMs  8 20% 

Lookup tables 7600 74% 

Flip-flops 6600 64% 

Digital clock managers 
and clock nets  

2 25% 

D—Dynamically Reconfigurable Hardware 

While RSA is not subject to frequent change as a standard, there is a 
possibility of change in factors on which it depends. For example, the 
Tarari Solution can easily accommodate key lengths of up to 2048 bits 
for encryption and 4096 bits for decryption, adequate by today’s 
standards. It could also accommodate an application that called for 
much greater key lengths, although this would require changes to the 
agent. By using software techniques and tools, a programmer could 
effect the hardware changes required, an option not open to the user of 
an ASIC-based solution. 

More likely, a developer might want to load-balance different operations 
between the Content Processing Engines by changing the Acceleration 
Agent Set, or change the amount of resources on the Tarari Processor 
dedicated to RSA in order to add other agents. The built-in flexibility of 
the Tarari Processor also opens up to the developer the opportunity to 
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change the mix of running agents (bulk encryption, DES, anti-virus, 
XML, etc.) on the Content Processing Engines as traffic profiles change. 
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Appendix A—Summary of Guidelines 

A—Algorithm Acceleration 

• Accelerated parts of applications can be sub-divided and 
expanded to operate in parallel. 

• Multiple algorithms can be pipelined/chained to make the 
best use of available resources. 

• Bandwidth requirements of algorithm data and control 
plane functions do not exceed PCI bus bandwidth of 4.267 
Gigabits per second. 

• The application’s optimal throughput cannot be achieved 
by a software implementation, but is possible to achieve 
the expected throughput with hardware acceleration. 

• The algorithm requires a high number of host processor 
cycles to process each byte of data. 

• There are no other bottlenecks that could prevent the 
application from running faster, even if some algorithms 
are offloaded to hardware. 

• Data can be pipelined (the output of one algorithm can 
immediately be used as input to the next algorithm), or 
fewer bytes of data can be sent back to the host 
processor than are sent to the Tarari Processor. 

• The size of a typical block of data is large, or multiple 
small blocks can be aggregated. 

• The application can benefit from running multiple 
simultaneous threads. 

B—Benefits of Offloading 

• The application can tolerate the latency introduced by 
transferring data across the PCI bus. 

• The host processor can perform other applications while 
waiting for the Tarari Processor to process offloaded data. 

• The algorithm to be offloaded consumes a high 
percentage of host processor cycles relative to other tasks 
that the system is performing. 

C—Compatibility of Hardware Platform and Algorithm 

• The system has at least one 3.3v-signaling-level PCI slot, 
preferably a dedicated 64-bit/66 MHz slot. 

• The algorithm can be implemented in the two Content 
Processing Engines of the Tarari Processor, using their 
internal and external resources. 

• The algorithm to be offloaded can benefit from as much 
as 256 MB SDRAM + 4 MB ZBT SSRAM local data storage. 
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D—Dynamically Reconfigurable Hardware 

• The algorithm has characteristics that are likely to change 
over time. 

• The design will benefit from different algorithms being 
swapped in and out of the Content Processing Engines as 
data characteristics change. 
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Appendix B—Advanced Topics 

Number of Gates and Configurable Logic Blocks Required 
Each Content Processing Engine on the current Tarari Processor 
includes these hardware components3: 

• 40 18x18-bit multipliers 

• 40 18 kbit block-RAMs 

• 1280 configurable logic blocks 

• 4 clock managers 
To determine whether an application or algorithm is suitable for 
acceleration by the Tarari Processor, estimate the hardware 
requirements of the algorithm. Estimating the extent to which a 
given algorithm can exploit these hardware requirements is a 
difficult task, but consider these factors: 

1. Each internal block-RAM is configured in variable widths or 1, 2, 
4, 9, 18, or 36 bits that can be concatenated for greater width 
and/or depth. Estimate the amount of “scratch pad” storage 
required for small look-up tables, FIFOs, stacks, rate buffers, 
register arrays, staging buffers, and complex data structures. 

2. Estimate the required number of flip-flops by counting the 
storage registers needed to store intermediate and final results. 

3. Find the number and width (number of bits) of major logic 
functions that the algorithm requires. 

4. To account for management interface overhead, multiply each of 
the foregoing results by 1.3 to arrive at the total number of flip-
flops and look-up tables required. 
Maximizing the use of these resources, and exploiting the parallel 
processing and pipelining/agent-chaining features of the Tarari 
Processor, provides the best increases in overall application 
performance. 

                                                                      
3 The current release of the Tarari Processor uses Xilinx* XC2v1000 Field Programmable 
Gate Arrays. Future versions may have different characteristics. 
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Legal Information 
 

Tarari is a trademark or registered trademark of Tarari, Inc. or its subsidiaries in 
the United States and other countries.  

 
Information in this document is provided in connection with Tarari products. No 
license, express or implied, by estoppel or otherwise, to any intellectual property 
rights is granted by this document. Except as provided in Tarari's Terms and 
Conditions of Sale for such products, Tarari assumes no liability whatsoever, and 
Tarari disclaims any express or implied warranty, relating to sale and/or use of 
Tarari products including liability or warranties relating to fitness for a particular 
purpose, merchantability, or infringement of any patent, copyright, or other 
intellectual property right. Tarari products are not intended for use in medical, 
life-saving, or life sustaining applications. Tarari may make changes to 
specifications and product descriptions at any time, without notice.  

 
Copyright © 2002-2003 Tarari, Inc. All rights reserved.  

 
* Other names and brands may be claimed as the property of others.  

 
** Performance tests and ratings are measured using specific computer systems 
and/or components, and reflect the approximate performance of Tarari products 
as measured by those tests. Any difference in system hardware or software 
design or configuration can affect actual performance. Buyers should consult 
other sources of information to evaluate the performance of components they are 
considering purchasing. For more information on performance tests, and on the 
performance of Tarari products, contact us as indicated below. 
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